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Abstract: Association rules mining and classification rules discovery are two important data 
mining techniques used to expose the relations among large sets of data items. The technique 
aims to find out the rules that satisfy the predefined minimum support and the confidence. 
Association rules mining has successfully been implemented in biomedical research and has 
demonstrated encouraging results in analysing the gene expression data in order to discover the 
relevant biological association among different genes, gene expression, and various protein 
properties like protein functionality and sequence similarity. In this paper, we applied the 
association rule mining technique – the ACO-AC to the problem of classifying proteins into its 
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the classifier performance in protein classification problem as excellent by identifying most 
accurate and compact rules. 
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1 Introduction 

The highly sophisticated methods applied on functional 
genomics have resulted to produce a huge amount of 
genomic data. The number of known protein sequences 
growing at very high rate are far larger than the number of 
known proteins structures. Despite recent technological 
advancement and structural determination methods, it is still 
difficult to find the structures of hundreds of protein 
sequences. Protein has different structures – the primary 
structure, secondary structure, tertiary structure and 
quaternary structure. A protein in tertiary structure is said to 
be a functional protein if it is folded correctly. Protein 
folding is the process through which protein primary 
structure transforms into it its tertiary structure. During 
protein folding process, amino acids interact with other 
amino acids to form a well-defined three-dimensional 
structure of a protein also called the native state of a protein. 
Folding may be either successful or not. A successful 
folding is necessary for a protein to function properly. For 
protein fold recognition problem the terms classification and 
prediction are often used interchangeably. Classifying the 
three-dimensional protein structure is the major target of 
computational biology (Dill et al., 2008). 

Getting maximum benefit of the voluminous genomic 
data for the betterment of humanity is vital. Data mining 
approaches attracted the world to deal with such kind of big 
data to extract useful information. Data mining is a 
combination of techniques that dig out novel, meaningful 
and valuable information using large databases and is very 
much useful for different tasks including classification, 
clustering and regression analysis. Classification is one of 
the important data analysis tasks that group items based on 
similar hidden characteristics matched with a set of already 
known labelled data items (Giannopoulou, 2008). This 
reveals the classification as a supervised technique having 
data items of different classes or groups with known class 
labels in advance. Classification builds a set of models 
based on training dataset and are used for testing dataset to 
correctly classify the class of a query data item. Training 
dataset consists of data samples representing different 
characteristics and their class labels. Among various models 
build by classification algorithm, an optimised model is 
used to classify a query data item of the testing dataset. 

Mathematica routines were developed with artificial 
neural network for predicting the amino acids spatial 
proximity in order to view the relationship between primary 
structure and three-dimensional protein structure (Fairchild 
et al., 1995). Using amino acid frequencies to recognise the 
fold (Du et al., 2003; Taguchi and Gromiha, 2007), the 
PSMACA (Sree et al., 2013), SARAMA (Basu etr al., 2013) 
are the few among those that investigate the relationship 
between residues and protein structure. Differential 
evolution (DE) strategy using HP model (Bitello and Lopes, 
2006), lattice model (Hart and Newman, 2005), neural 
network (Igel et al., 2004; Langlois et al., 2004), gating 
neural network (Huang et al., 2003), support vector 
machines (Ding and Dubchak, 2001; Langlois et al., 2006), 
and K-local hyperplane distance nearest neighbour  

(Okun, 2004) have also made their contribution in solving 
the protein classification problem. Sometimes, the  
three-dimensional structure information of a protein is 
missing. Despite the availability of its amino acids sequence 
it is very hard to obtain the 3-D coordinates of protein 
atoms. Such situation was targeted by Kin et al. (2004) and 
proposed the use of kernel matrix that includes kernel 
values representing the protein 3-D structure information 
and the missing entries. Moreover, the hierarchical strategy 
for protein and structure classification (Cheng and Baldi, 
2006; Marsolo et al., 2005), ensemble classifier (Shen et al., 
2006), combinatorial fusion technique (Lin et al., 2007), 
hidden Markov models, NN, SVM, Bayesian methods and 
clustering techniques (Cheng et al., 2008), protein 
secondary structures (Liu and Wang 2007) are the efforts 
toward solving the protein folding problem. In addition, 
among various evolutionary technique a GA-based and 
feature selection approach (Chen et al., 2009), ACO-based 
with 2-D HP model (Hu et al., 2008), HP model in a 3D 
cubic lattice model (Fidanova, 2006) have also played their 
role for tackling the problem. 

Due to the speedy growth in genomic data in recent 
years, researchers are more concern about how to attain new 
information, knowledge and ideas of such voluminous 
biological data. Traditional methods lack the ability to meet 
this challenge. Association rule mining is one of the best 
choice of most of the researchers that extract the relevant 
and vital association between various gene expressions, 
protein sequences and structures. One such an approach was 
introduced by Yang et al. (2010) to discover the rules in 
order to predict protein secondary structure using support 
vector machines and the knowledge discovery process. 
Association rule mining concept was first introduced by 
Agrawal et al. (1993). The goal of the technique is to extract 
meaningful information in the form of correlations or 
associations among sets of data items of large databases. 

In biomedical research, association rule mining 
discovers the rules for relevant information like patient 
symptoms, diagnosis and patient treatment procedure 
(Doddi et al., 2001). In genomic data analysis, association 
rule mining has successfully been applied to gene 
expression data analysis, protein-protein interactions, 
protein function and sequence motifs (Kotlyar and Jurisica, 
2006). Solving the protein folding problem, a number of 
optimisation algorithms like evolutionary algorithm, ant 
colony optimisation (ACO) algorithm and Monte Carlo 
methods have been used. Association rule mining in 
association with ACO algorithm was used to mine those 
association rules that meet the pre-defined criteria and 
covering the whole data used during the training. From the 
last couple of decades, the algorithm attracted many 
researchers because of its successful contribution in various 
application areas and more importantly solving the 
optimisation problems (Grosan et al., 2006). 

In this work, we explored the ACO-based association 
rule mining techniques known as the hybrid classification 
algorithm ACO-AC (Shahzad and Baig, 2011) for 
classification of proteins into its various folds of the 
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structural classification of proteins (SCOP) dataset. The 
method is the merger of the association rules mining and 
supervised classification algorithm – the ACO. Using the 
evolutionary characteristics, the algorithm searches the most 
appropriate and efficient set of association rules. The 
searching process involved a pre-defined minimum support 
and a confidence threshold for rules that build a classifier. 
Rules discovery in this approach is an iterative process 
during which efficient rules are selected, build a prediction 
model and hence finally adopted for classification of unseen 
samples. 

2 Material and methods 

2.1 SCOP dataset 

The dataset used in this work is the most well known and 
authentic protein database – the SCOP. It provides the 
structural as well as evolutionary relationships among all 
proteins of known structures in a comprehensive manner 
(Hubbard et al., 1997). Considerable amounts of human 
efforts have been involved in classification of proteins 
through visual inspection and structures evaluation. 

The protein classification in SCOP is on hierarchical 
level (Dubchak et al., 1999). These levels include family, 
super family, fold and class. Family (clear evolutionary 
relationship) consists of those proteins that 

a the sequence similarity among proteins is significant  

b proteins with almost same function and structures. 

Super family (probable common evolutionary origin) 
consists of families where proteins have low sequence 
similarities and the existence of possible common 
evolutionary origin based on their structures and functional 
characteristics. Fold or common fold (major structural 
similarity) contains families and super-families with 
proteins having 

a same major secondary structures in same arrangement 

b same topological interconnection 

c less evolutionary relatedness. 

Class gathers different folds that represent the protein 
secondary structure. 

The major categories of classes are α (proteins with  
α-helices), β (proteins with β-sheets), α/β (protein 
structures formed by α-helices and β-sheets) and α + β 
(protein structures with large segregation of α-helices and 
β-sheets). Other categories are multi-domain, small proteins 
and peptides and few more. 

Proteins sequences having sequence similarity between 
any two proteins with 35% at maximum and that has at least 

80 residues were selected. According to the SCOP 
classification, each protein is associated with a fold. SCOP 
database has number of different folds but the major ones 
are (α, β, α/β, and α + β). A class consists of a group of 
folds. SCOP contains 128 folds with one or more proteins, 
whereas after removing single-protein folds, the final 
dataset include 27 folds with four classes. 

Table 1 describes the SCOP dataset with 27 folds 
(1..27), fold index, fold name, number of proteins in a fold, 
total number of folds and total number of proteins in a 
particular class and a class name. There are 698 proteins of 
the SCOP dataset. 

The feature vectors of the SCOP dataset is extracted by 
transforming amino acids sequence into a sequence of six 
structural or physico-chemical properties of residues 
(Dubchak et al., 1997). The properties are amino acids 
composition (C), predicted secondary structure (S), 
hydrophobicity (H), normalised van der Waals volume (V), 
polarity (P) and polarisability (Z). 

Twenty amino acids are divided into three different 
groups as polar (p), neutral (n) and hydrophobic (h). Table 2 
provides details about the six properties/features of proteins 
such as C, S, H, V, P, and Z, symbol, dimension and the 
twenty amino acids placed in their corresponding group. 

The dimension of each protein feature is 21 except the 
amino acid composition (C) which has the dimension 20 
showing the percent existence of each twenty amino acid in 
a protein sequence. The remaining five features are based 
on the three descriptors composition (C) describing the 
percent composition of amino acids in protein sequence 
belonging to each one of the three groups; transition (T) 
illustrating the transition frequencies from p-n, n-h, h-p and 
vice versa; and distribution (D) showing the distribution 
pattern of amino acid at five different locations for each 
group with tentative starting position 0, plus 25% for each 
of the next location. 

2.2 Ant colony optimisation 

Dorigo (1992) initially introduced ACO algorithm 
motivated through the natural behaviour of ants. Aim of the 
algorithm was to find a shortest path based upon the ants 
behaviour searching for a path between a source of food and 
their residence (colony). With the passage of time, a number 
of extensions to the original concept have been made and 
implemented successfully for solving different types of 
problems. ACO is an iterative process in which selected 
population creates multiple possible solutions. ACO 
exploits the foraging behaviour of ant species working in 
such a way to search their food in less amount of time. The 
ants pour pheromone on the route to be followed by other 
ants of the colony (Dorigo et al., 2006). 
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Table 1 The SCOP dataset with 27 folds, fold index, fold name, number of proteins in a fold, and a class name 

Fold no. Fold index Fold name No. of proteins Class name Total no. of proteins No. of folds 

1 1 Globin-like 19 
2 3 Cytochrome c 16 
3 4 DNA-binding 3-helical bundle 32 
4 7 Four-helical up-and-down bundle 15 
5 9 4-helical cytokines 18 
6 11 EF-hand 16 

α 116 6 

7 20 Immunoglobulin-like beta-sandwich 74 
8 23 Cupredoxins 21 
9 26 Viral coat and capsid proteins 29 
10 30 ConA-like lectins/glucanases 13 
11 31 SH3-like barrel 16 
12 32 OB-fold 32 
13 33 Beta-trefoil 12 
14 35 Trypsin-like serine proteases 13 
15 39 Lipocalins 16 

β 226 9 

16 46 Beta/alpha (TIM)-barrel 77 
17 47 FAD (also NAD)-binding motif 23 
18 48 Flavodoxin-like 24 
19 51 NAD(P)-binding Rossmann-fold 

domains 
40 

20 54 P-loop containing nucleotide 
triphosphate hydrolases 

22 

21 57 Thioredoxin-like 17 
22 59 Ribonuclease H-like motif 24 
23 62 Alpha/beta-hydrolases 18 
24 69 Periplasmic binding protein-like 15 

α/β 260 9 

25 72 Beta-grasp 15 
26 87 Ferredoxin-like 40 
27 110 Small; small inhibitors, toxins, 

lectins 
41 

α + β 96 3 

Table 2 The six protein properties, symbol, their dimensions and 20 amino acids in three groups 

Property Symbol Dimension Polar (p) Neutral (n) Hydrophobic (h) 

Amino acids composition C 20 - - - 
Predicted secondary structure S 21 α-helix β-sheets Turn 

Hydrophobicity H 21 R, K, E, D, Q, N G, A, S, T, P, H, Y C, V, L, I, M, F, W 
Normalised van der Waals volume V 21 G, A, S, C, T, P, D N, V, E, Q, I, L M, H, K, F, R, Y, W 
Polarity P 21 L, I, F, W, C, M, V, Y P, A, T, G, S H, Q, R, K, N, E, D 
Polarisability Z 21 G, A, S, D, T C, P, N, V, E, Q, I, L K, M, H, F, R, Y, W 

 
ACO has proved its importance to the world because of its 
successful role in diverse applications since its inception, 
for example optimising the power network management 
problem (Abdelaziz et al., 2012), algorithms and problem 
complexity analysis (Ahangarikiasari et al., 2013), a 
mathematical problem (Anstreicher et al., 2002), and/or 
biomedical problems (Fidanova, 2006). 

Real ants get attraction of human beings since long due 
to its wonderful social behaviour. The most promising 
feature is their queue formation between their source and 
destination while searching for the foods. The lesson learnt 
by most of the scientists, researchers from this behaviour of 
ants is to find the shortest paths in order to achieve their 
ultimate goal. 
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Biologists proved it experimentally that the way ants 
follow their antecedents is due to the communication 
between them through pheromones – chemicals with the 
ability to attract other individuals. The amount of 
pheromone concentration guides other ants to walk through 
the same path as pheromones disperse with the passage of 
time if, further, no pheromone addition takes place. The 
suitable path for the ants’ family is the shorter one with 
more concentration as compared to the longer one. 
Researchers applied it for optimisation problems after 
thoroughly studying this behaviour. Solving variety of 
problems becomes the main reason of popularity of the 
ACO algorithms. Several ACO algorithms have been 
developed but the original one was called the ant system 
and is referenced by the algorithms suggested latter on 
Dorigo and Stützle (2004). 

Since a decade, the scientists and researchers have 
greatly converted their attention towards ACO due to its 
high-rated success in discrete optimisation problems where 
other approaches have limitations. ACO always remains a 
best choice for these kinds of problems and finds the quality 
solution in a faster manner. Find a dynamic shortest path in 
a telecommunication network, job scheduling, image 
processing, bioinformatics and data mining are sample 
application areas to name. 

2.3 Association rules discovery 

A voluminous amount of data is gathered by many business 
enterprises on daily basis. Typical example of such data is 
market-based transaction, where many stores collect the 
customer information and the items list purchased at the 
checkout counters. Retailers analyse the data that help in 
their proper inventory management, marketing promotions, 
pricing, product placements and customer relationship 
management. Representing these relationships, association 
rules were introduced (Agrawal et al., 1993) in order to 
discover interesting relationship hidden in large databases. 

An association rule is written as IF – THEN statement, 
where IF part of the rule is known as the antecedent  
(left-hand-side or LHS) and THEN part is said to be the 
consequent (right-hand-side or RHS) of the rule. Formally, 
association rule is the implication expression described as  
X → Y, where the intersection of X and Y is NULL, and  
X and Y represent different sets of items. To observe the 
strength of the rule two factors are associated – support and 
confidence. 

Support (s) is the fraction of transactions in a database 
that contain both X and Y, and confidence (c) is the 
occurrences of itemset in X that appear in transactions. To 
explain the concepts, suppose an example database with six 
items (I) and five transactions (T). 

Itemset (I)  {bread,  milk,  eggs,  butter,  coke,  fruit}=  

T1  {bread,  milk}
T2  {bread,  eggs,  butter,  coke}
T3  {milk,  eggs,  butter,  fruit}
T4  {bread,  milk,  eggs,  butter}
T5  {bread,  milk,  eggs,  fruit}

=
=
=
=
=

 

An example rule {milk, eggs} → {butter} meaning that, if 
milk and eggs are bought, customers also buy butter. 

To select the important rules from set of all possible 
rules, the two measures reflecting the significance and 
interest of the rules, that is, support and confidence is 
determined. Consider the rule {milk, eggs} → {butter} with 
X = {milk, eggs} and Y = {butter}. 

• support (s) is represented as: 

( ) /s X Y Nσ= ∪  (1) 

• confidence (c) is represented as: 

( ) / ( ).c X Y Xσ σ= ∪  (2) 

Symbol σ is the support count (σ) showing the frequency of 
occurrence of itemset (I). For example; 

({milk,eggs,  butter})  2.σ =  

(milk,eggs,  butter) / 2/5=0.4s Nσ= =  

means that it occurs 40% of all transactions (two out of five 
transactions). 

Confidence (c) of the rule {milk, eggs} → {butter} 

(milk,eggs,  butter) / (milk,eggs) 2/5 0.67s σ σ= = =  

It means that 67% of the transactions containing milk and 
eggs the rule is correct. That is 67% of the times milk and 
eggs are bought, customers also buy butter. 

The reason for using support and confidence is that 

1 a rule with low support reflects its insignificance and 
less interested at business perspective and hence 
eliminated 

2 confidence measure the reliability of a rule. 

The goal of association rule mining is to discover all those 
rules that have support (s) ≥ minsupp threshold and 
confidence (c) ≥ minconf threshold, where minsupp and 
minconf are the corresponding support and confidence 
thresholds respectively. 

Besides market-based transaction, association rule 
mining is also applicable in many areas of interest such as 
bioinformatics, medical diagnosis, web mining, text mining 
and scientific data investigation. One interesting type of 
association rule mining is the associative classification that 
discovers association rules based on the class labels where 
consequent part of the rule is always a class label. The 
dataset used for the discovery of association rules, include 
set of transactions each consist of a set of attributes and a 
predefined class label. Class association rule is represented 
as X → C, where X contains set of attributes of a transaction 
and C is the class label. Along with support and confidence, 
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coverage is also specified in associative classification. It 
determines how much percent of the data is covered 
correctly by the rules. 

2.4 Working of the ACO-AC algorithm 

Briefly describe the ACO-AC algorithm, it searches for the 
set of association rules using the dataset and build a 
classifier. It differs from conventional association rules 
mining that considers all possible rules and becomes 
unaffordable in large databases; instead, ACO-AC considers 
only the subset of such rules. Support and confidence are 
the two main components for the rule selection. 

Figure 1 shows the working of the algorithm in detail. 
Rules searching are based on ACO mechanism. A graph 
represents a search space where nodes are the possible 
solutions. 

A separate rules set is reserved and updated for a class 
during its rules generation process till the predefined 
minimum coverage threshold. The same process is repeated 
in the same style for rest for the class labels and completed 
when all classes have adequate rules. 

Figure 1 Working of the ACO-AC algorithm (see online version 
for colours) 

 

Training data and testing data in the figure are actually the 
protein sequences represented by feature vectors. Both are 
separate datasets contained in SCOP protein data. It is 
important to note that the feature vectors used for training 
are not used as testing data during experimentations. 

2.4.1 Systematic sketch of the algorithm 

• The moment training starts, the training data is 
provided followed by mandatory parameter 
initialisation such as rules set discovered  
(empty initially), minimum support, confidence, 
coverage, and maximum number of ants. 

• A class is chosen from the set of classes for which 
association rules are generated and are placed after each 
generation in the rules list (empty initially). 

• Pheromone values and heuristic function are initialised. 
The initialisation of pheromone values is made with the 
same amount at the beginning of rules construction for 
each class. The initial pheromone value (P) for the edge 
(i, j) is given as: 

1

( 1) 1
N

ij i
i

P t v
=

= = ∑  (3) 

The ij represent the edge with pheromone value P, N is 
the total number of attributes in a sample of a dataset 
except the class label, vi represents the number of 
possible values at attribute Ni. Pheromone values that 
do not meet the minimum support are set to zero. 

• Heuristic function measures the path quality between 
two items. Quality means the preference of the path to 
be selected by the ants. It is introduced in order to guide 
the ant to select the most attractive path and avoids 
probing the unnecessary search space. A heuristic 
function (h) used in this study is based on calculating 
the correlation of the next possible items and is of the 
form: 

( ) ( ),  ,  ,  . ,  ij i j k i k j k jh x x C x C x C x=  (4) 

The term |xi, xj, Ck| represent the number of uncovered 
training samples with items xi, xj and class Ck, divided 
by |xi, Ck| representing the uncovered samples having 
item xi with class Ck in order to calculate the correlation 
between items xi and xj; whereas, xi and xj are the items 
selected to be added in the rule. The next term |xj, Ck| 
shows the number of uncovered samples having item xj 
with class Ck divided by |xj|, which is the number of 
uncovered samples with item xj. This part of the 
heuristic function shows the significance role of item xj 
in determining the class Ck. 

• During rule construction process, a counter (g) is used 
(initially 1) to control the addition of items up to its 
maximum number by an ant in the antecedent part of a 
rule. In the first generation, an ant construct a rule with 
single item, two-items rule in a second generation, 
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three-items rule in third and so on till N-items rule is 
constructed in the Nth generation. The addition of item 
(attribute-value pair) in the antecedent part of a rule is 
carried out on incremental basis by an ant and is 
selected primarily while ignoring all other attribute 
values of a rule. The selection probability (S) is shown 
as below. 

( )
1 1

( ) ( ) ( ) ( )
ivN

ij ij ij i ij ij
i j

S P g h c A P g h c
= =

⎛ ⎞
⎡ ⎤⎜ ⎟= ⎣ ⎦⎜ ⎟

⎝ ⎠
∑ ∑  (5) 

where Pij(g) and hij(c) represent the pheromone value 
and the heuristic function value between items (i, j) for 
the current generation and class respectively. The Ai is a 
value either ‘1’ or ‘0’ showing whether a particular 
attribute is accessed or not by the current ant. Items 
with high pheromone values have maximum chances 
for selection. 

• Ants start constructing rules for each class based on the 
specified support and confidence criterion. The process 
continues until all the attributes are accessed or when 
minimum coverage criteria fulfils. After construction of 
rules by all the ants during a generation, they are 
evaluated and their quality is thoroughly examined. 
Rule quality (Q) is evaluated using the following 
criteria. 

/Q TP Coverage=  (6) 

where TP represent the number of training samples 
whose antecedent and consequent part is similar with 
the antecedent and consequent part of the ant’s rule 
respectively. Coverage shows the number of training 
samples that match with the antecedent part of the rule 
constructed by an ant. It tells about the confidence level 
of the rule and high confidence value resulting in a 
more accurate rule. 

• Subsequent to rules construction by all ants, rules are 
placed temporarily and are examined so that rules not 
meeting the minimum support and confidence level, are 
discarded. The remaining rules are moved in a rule set 
specified for the current class (Rc) and are inserted in 
the discovered rules set (Rd) provided it enhances the 
quality of the latter set (Rd). It takes place in such a way 
that a rule from (Rc) is taken and compared with the 
existing one (Rd) one after the other. In case if the 
existing rules set (Rd) have greater or equal confidence 
than that of the newly constructed rule of (Rc) the 
insertion will not take place, otherwise it is included in 
(Rd). The process carries on till all the rules of (Rc) are 
compared. 

• The rules discovery process for a specific class 
continues till it reaches the minimum coverage 
threshold. The same procedure is repeated for the next 
class and so on. 

• In case the minimum coverage threshold is not yet 
fulfilled, the pheromone value is updated then. The 

pheromone value for the edge (i, j) is updated on the 
paths through which ants passed after every generation. 

( )( 1) (1 ) ( ) 1 (1/1 ) ( )ij ij ijP g P g Q P gε+ = − + − +  (7) 

where Pij(g) represent the pheromone value between 
items (i, j) for the current generation (g), ε is the 
pheromone evaporation coefficient and Q is the quality 
of the ant’s rule constructed. More pheromone is 
deposited on the edge through which more ants’ passes 
causing more probability for selecting an attractive 
edge. 

• The training process finally stops after the completion 
of rules construction for all the classes. 

• A large number of rules are inserted in the discovered 
rules set (Rd). There is a possibility of the existence of 
redundant rules in (Rd). These are the rules that are true 
for multiple training samples. Such rules are removed 
from (Rd) the final rules set. 

• On the basis of confidence the final discovered rules set 
is sorted (highest to lowest) and is then used for 
classifying the test samples. Rules are tested one after 
the other until a rule becomes true for a testing sample. 
In this case the remaining rules are not tested. There 
also involve a pruning mechanism that notifies those 
rules, which are never used during the training. This 
way such rules are pruned from the final rules set and 
hence resulting a final classifier that is used for 
classifying the unseen samples. In other words, pruning 
increase the clarity of a classifier and enable them to 
classify a testing sample more accurately even with 
small number rules and in a faster manner. 

• Finally, testing samples are presented to the classifier. 
The sample is assigned a class label of the rule with 
greater confidence and coverage range. Rules are tested 
for the test sample one after the other in a sorted 
manner. The rules, during this process, whose 
antecedent becomes true for a test sample, the 
consequent of the rule is responsible for assigning the 
resulting class. In case none of the rule happens to be 
true for a test sample, the default class is assigned, the 
majority class of the training set, as the final predicted 
class for the test sample. 

3 Results and discussion 

The ACO-AC algorithm is applied to the SCOP dataset used 
by (Dubchak et al., 1997). Experimentation has been carried 
out using the system with 2.6 MHz dual core processor and 
a memory of 2 GB. An analysis of the performance  
of the ACO-AC method and other various classification 
methods available in the Weka 3.6 software has been 
carried out in this study. Weka is a collection of  
machine learning algorithms for data mining tasks  
(Hall et al., 2009). The software contains multipurpose tools 
including classification. These methods include REPTree, 
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RandomForest, J48, FT, PART, JRip, MultiClassClassifier, 
LogitBoost, EnsembleSelection, bagging, IBK, SMO and 
NaiveBayes. 

The comparison of protein fold classification accuracy is 
based on 10-fold discussed systematically using ACO-AC 
method and various methods available in the Weka 3.6 
software. The distribution of proteins of all the classes in 
each fold is equal and not random. Results are generated 
using the best top 5, 10, 15 and all attributes of the six 
protein features such as C, H, S, P, V and Z using feature 
selection mechanism. The ACO-AC algorithm [referred as 
present (ACO-AC) in the figures] predicts better accuracy 
as compared to other available methods in terms of 
accurately classifying the protein fold using amino acid 
composition feature of protein. 

3.1 Performance with amino acid composition (C) 

In Figure 2(a), with top five best attributes, the classification 
accuracy of ACO-AC is 63% where as the maximum 

accuracy against is of RandomForest method which  
is 38%. With ten best attributes, the ACO-AC method  
has an accuracy of 74% and outperforms the best among 
others – the RandomForest method, having an accuracy of 
44%. With 15 best attributes, the present method has a high 
accuracy of 78% as compared to other available methods 
against which RandomForest appears with better accuracy 
of 45% among others available methods. Taking into 
account all the 20 attributes of amino acid composition 
feature of protein, the ACO-AC method comes up with an 
accuracy of 80% that is much better than all other available 
methods including the best among others, which is the 
RandomForest method with 47% accuracy. To summarise, 
with top best 5, 10, 15 and all (20) attributes of amino acid 
composition feature, the performance of the ACO-AC 
method is much better as compared to other available 
methods. 

Figure 2 Classification accuracy (in percentage) for proteins feature – amino acid composition (C) of SCOP dataset, the performance  
of the ACO-AC algorithm against the other available classification methods, (a) open circle symbol with bold-solid-line 
represent the Present (ACO-AC) method which is identical in each plot; square box symbol with dashed-line represent  
REPTree method; six-crossed symbol with dotted-line represent RandomForest method; cross symbol with dash-dot-dash-line 
represent J48 method; and hexagon symbol with thick-solid-line represent FT method (b) diamond symbol with dashed-line 
represent PART method; downward-triangle symbol with dotted-line represent JRip method; and upward-triangle symbol  
with dash-dot-dash-line represent MultiClassClassifier method (c) left-triangle symbol with dashed-line represent  
LogitBoost method; right-triangle symbol with dotted-line represent EnsembleSelection method; and filled-circle symbol  
with dash-dot-dash-line represent bagging method (d) pentagon symbol with dashed-line represent IBK method;  
filled-downward-triangle symbol with dotted-line represent SMO method; and filled-upward-triangle symbol with  
dash-dot-dash-line represent NaiveBayes method 
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In Figure 2(b), with 5, 10, 15 and 20 attributes of amino 
acid composition feature of proteins, the ACO-AC method 
has an accuracy of 63%, 74%, 78% and 80% respectively. 
Against it, PART method has the maximum accuracy of 
28% with 5 attributes; with 10, 15 and 20 attributes 
MultiClassClassifier method comes up with the maximum 
accuracy of 31%, 37% and 41% respectively. In brief, the 
ACO-AC method clearly shows better results compared to 
other available methods. 

In Figure 2(c), maximum accuracy with 5, 10, 15 and  
20 attributes among other available methods is the bagging 
method with 33%, 37%, 39% and 40% accuracy and is far 
behind than the present method with classification accuracy 
of 63%, 74%, 78% and 80% respectively. 

In Figure 2(d), the classification accuracy of the  
ACO-AC method with 5, 10, 15 and 20 attributes is 63%, 
74%, 78% and 80% respectively. NaiveBayes method has 
an accuracy of 36% with 5 attributes; IBK method with 10, 
15 and 20 attributes emerges with better accuracy of 44%, 
47% and 48%. Comparing the present versus the rest, the 
performance of the ACO-AC method is excellent. 

3.2 Performance with hydrophobicity (H) 

The performance of the ACO-AC method in terms of 
classification accuracy with hydrophobicity (H) feature of 

protein is commendable in comparison with other available 
methods. 

In Figure 3(a), ACO-AC method has a much higher 
accuracy of 61%, 73%, 75% and 77% against which 
RandomForest has the maximum accuracy of 36%, 36%, 
36% and 35% with 5, 10, 15 and all (21) attributes 
respectively. 

In Figure 3(b), with 5, 10, 15 and 21 attributes, against 
the accuracies of the present method, PART method comes 
up with the maximum accuracies of 29%, 30%, 28% and 
28% respectively, which are far behind than the ACO-AC 
method. 

In Figure 3(c), bagging emerges as the best one among 
other methods with 5, 10, 15 and 21 attributes having 
accuracies of 35%, 36%, 37% and 38% respectively against 
the present method. The present method outperforms all the 
other methods. 

In Figure 3(d), as compared to the present method, the 
other methods have far less behind in performance. With 5, 
10, 15 and 21 attributes, the best one method among other 
available methods against the present is the IBK method 
with 28%, 33%, 35% and 36% accuracies respectively. 

In short, ACO-AC method performs much better with 
any number of attributes as compared to other available 
methods. 

Figure 3 Classification accuracy (in percentage) for proteins feature – hydrophobicity (H) of SCOP dataset 

 
Notes: The performance of the ACO-AC algorithm against other available classification methods. Same symbols description as in 

Figure 2. 
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3.3 Performance with polarity (P) 

Another protein feature is the polarity (P) in which the 
ACO-AC method performed tremendously in terms of 
classification accuracy as long as the other available 
methods are concerned. 

In Figure 4(a), the ACO-AC method with 5, 10, 15 and 
all (21) attributes of the polarity feature of protein produces 
the accuracies of 59%, 67%, 70% and 72% respectively. 
Against the same number of attributes, among other 
available methods the best one is the RandomForest with 
accuracies of 33%, 36%, 36% and 38% respectively. The 
present method outclasses all others methods. 

In Figure 4(b), PART comes up with better performance 
having accuracies of 26%, 25%, 30% and 26% with 5, 10, 
15 and 21 attributes respectively, which is very much lower 
than the present method. 

In Figure 4(c), having 29%, 33%, 35% and 36% 
accuracies with 5, 10, 15 and 21 attributes, bagging among 
the other methods rises up with better result but lower than 
the present method. 

In Figure 4(d), against the present method, IBK is the 
best one among others with accuracies of 26%, 31%, 34%, 
and 35% respectively. However, the ACO-AC is much 
better in classifying the protein folds. 

3.4 Performance with predicted secondary  
structure (S) 

The ACO-AC method performance using the predicted 
secondary structure (S) feature of protein is extremely 
admirable because of producing the most encouraging 
results. 

In Figure 5(a), the ACO-AC produces an accuracy of 
80%, 84%, 82% and 82% with 5, 10, 15 and all (21) 
attributes of the predicted secondary structure feature. In 
contrast, the best one among other methods is the 
RandomForest method that produces 49%, 52%, 50% and 
51% accuracy respectively. ACO-AC method outperforms 
all the methods with their best results. 

In Figure 5(b), against the accuracies of the ACO-AC 
method with 5, 10, 15 and 21 attributes, PART comes up 
with accuracies of 43%, 45%, 44% and 42% respectively, 
which is much lower than the present approach. 

In Figure 5(c), bagging method, with 5, 10 and 21 
attributes, emerges having the maximum accuracies of 47%, 
47% and 48% respectively and LogitBoost produces  
48% accuracy with 15 attributes against the accuracy of 
ACO-AC method. Both these methods have negligible 
performance against the present approach. 

Figure 4 Classification accuracy (in percentage) for proteins feature – polarity (P) of SCOP dataset. 

 
Notes: The performance of the ACO-AC algorithm against other available classification methods. Same symbols description as in 

Figure 2. 
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Figure 5 Classification accuracy (in percentage) for proteins feature – predicted secondary structure (S) of SCOP dataset 

 
Notes: The performance of the ACO-AC algorithm against other available classification methods. Same symbols description as in 

Figure 2. 
 

In Figure 5(d), with 5, 10 and 21 attributes, the present 
approach has much higher accuracies than the best among 
others, which is the IBK with accuracies of 40%, 40%, 45% 
and 45% respectively. In other words, with predicted 
secondary structure feature of protein ACO-AC 
performance is very much outstanding as compared to other 
methods. 

3.5 Performance with normalised van der Waals 
volume (V) 

Using the normalised van der Waals volume (V) feature 
also produces much better results than the competing 
techniques. 

In Figure 6(a), the ACO-AC method has the 
classification accuracies of 54%, 68%, 72% and 75% with 
5, 10, 15 and all (21) attributes of respectively. In contrast 
RandomForest method comes up with better accuracies 
though less significant than the present method with 32%, 
35%, 35% and 38% respectively among other methods. 

In Figure 6(b), against the ACO-AC method, with 5, 15 
and 21 attributes, MultiClassClassifier method comes up 

with their best results of 20%, 30% and 27% respectively; 
and with 10 attributes PART method has the better accuracy 
of 26% among others methods. In all cases, the present 
method outclasses all the other methods. 

In Figure 6(c), bagging method has the better accuracies 
of 25%, 27%, 32% and 33% with 5, 10, 15 and all (21) 
attributes respectively. However, against the ACO-AC 
method it has the poorer performance. 

In Figure 6(d), with 5, 10, 15 and 21 attributes, the best 
among other methods is the IBK with accuracies of 26%, 
33%, 34% and 33% respectively. As compared to the 
present method, IBK is far behind. Simply, the ACO-AC 
method performance in terms of classification is much more 
than the other available methods. 

3.6 Performance with polarisability (Z) 

The performance of all other methods against the ACO-AC 
method using the polarisability (Z) feature of protein is 
almost negligible. 

 

 



12 M.A. Khan et al.  

Figure 6 Classification accuracy (in percentage) for proteins feature – normalised van der Waals volume (V) of SCOP dataset 

 
Notes: The performance of the ACO-AC algorithm against other available classification methods. Same symbols description as in 

Figure 2. 
 

In Figure 7(a), the ACO-AC method produces 61%, 69%, 
73% and 74% classification accuracies with 5, 10, 15 and 
all (21) attributes of polarisability (Z) feature respectively. 
RandomForest method comes up with better accuracies 
among other methods with accuracies of 32%, 35%, 35% 
and 38% respectively, which is less significant than the 
present method. 

In Figure 7(b), PART method produces the better results 
with 5, 10 and 21 attributes having 27%, 26% and 27% 
accuracies and MultiClassClassifier method with 15 
attributes produces the better accuracy of 29%. Both these 
methods are much lower in performance as compared to the 
ACO-AC method. 

In Figure 7(c), against the performance of the present 
method with 5, 10 and 21 attributes, bagging method 
emerges with their best accuracies of 32%, 31%, 36% and 
35% respectively. As compared to the ACO-AC method, all 
other methods have the poorer performance including the 
bagging method. 

In Figure 7(d), with 5, 10 and 21 attributes, the best 
method among other methods against ACO-AC is the IBK 
method with accuracies of 28%, 34%, 34% and 35% 
respectively. However, all other methods including IBK are 
far behind in terms of classification accuracy. In summary, 

ACO-AC method outclasses all other methods in all the 
cases. 

4 Conclusions 

The two important data mining techniques – association 
rules mining and classification rule discovery, used to 
expose the relations among large sets of data items. Rules 
discovery is supervised in nature. They have been adopted 
successfully in biomedical research for its significant 
outcome. In this study, the problem of classification of 
proteins into various folds is investigated and applied 
association rule mining techniques; the ACO-AC algorithm. 
The algorithm searches only for a subset of significant 
association rules rather than searching for all possible rules. 
It has the capability to deal with complex search space 
efficiently. Rules are discovered and evaluated at each 
generation, as a result quality rules are discovered in the 
subsequent generations. The challenge of computational 
complexity for large databases in this algorithm is 
efficiently handled because of mining a small set of 
association rules. 
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Figure 7 Classification accuracy (in percentage) for proteins feature – polarisability (Z) of SCOP dataset 

 
Notes: The performance of the ACO-AC algorithm against other available classification methods. Same symbols description as in 

Figure 2. 
 
The results produced by the ACO-AC using SCOP proteins 
dataset are compared with thirteen various classification 
methods available in the Weka 3.6 software. The dataset 
consists of 27 folds with 698 proteins. Results for all 
methods included in this study for protein fold classification 
accuracy is based on 10-fold. All the features of proteins 
data are categorised into four groups of best 5, 10, 15 and 
all attributes using feature selection mechanism. 
Experimental results show remarkable performance of 
ACO-AC as compared to other state of the art classification 
methods. Significant improvement has been noted in 
classification accuracy by the ACO-AC algorithm and 
outperforms other methods. In the Amino acid composition 
feature of protein the best-chosen method is the 
RandomForest method with five attributes, and IBK with 
10, 15 and 20 attributes but are very much lower in 
classification accuracies than ACO-AC. Likewise, with the 
hydrophobicity feature of protein RandomForest method 
appears as better with five and ten attributes and bagging 
method with 15 and 21 attributes but outclassed by  
ACO-AC. Also, in polarity and predicted secondary 
structure feature of protein, the ACO-AC performance is 
outstanding as compared RandomForest method, better 
among other methods. ACO-AC in normalised van der 
Waals volume has far better results than both RandomForest 
with 5 attributes and IBK with 10, 15 and 21 attributes. 

Similarly, in the polarisability feature of protein become 
negligible when compared with RandomForest method 
appears better in accuracies with 5, 10 and 21 attributes and 
bagging method having better accuracy with 15 attributes, 
both are far behind than the performance of the ACO-AC 
method. 

To conclude the discussion, experimental results further 
reveal that the other available methods classify the correct 
fold of a protein almost by half, which is intolerable as long 
as such an important area of research is concerned. Second, 
as the number of attributes increases the performance of the 
ACO-AC method increases and the trend remains the same 
in all the six protein features except with 15 attributes of the 
predicted secondary structure feature. The behaviour divert 
again later on. Moreover, with predicted secondary structure 
feature of protein the accuracy rises up amazingly, which 
indicate the significance of the secondary structures in the 
formation of a protein. 

To wrap up, the ACO-AC algorithm is more efficient 
and effective in the sense that it builds a robust learning 
model by discovering rules that are more significant 
increasing the coverage capability of the rules set and 
enhancing the classification accuracy convincingly even in 
complex search spaces. In future, the accuracy of protein 
fold classification can be increased by combining various 
proteins features such as CH, CHS, CHSP, and CHSPVZ 
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and this fact is already exposed in previous studies. It is also 
aimed that the algorithm shall deal all types of attributes 
instead of only categorical. Efforts will also be made to 
automate the minimum support and confidence threshold for 
the association rules discovery. 
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